Growing Interpretable Part Graphs on ConvNets via Multi-Shot Learning

Abstract

This paper proposes a learning strategy that extracts object-part concepts from a pre-trained convolutional neural network (CNN), in an attempt to 1) explore explicit semantics hidden in CNN units and 2) gradually grow a semantically interpretable graphical model on the pre-trained CNN for hierarchical object understanding. Given part annotations on very few (e.g., 3—12) objects, our method mines certain latent patterns from the pre-trained CNN and associates them with different semantic parts. We use a four-layer And-Or graph to organize the mined latent patterns, so as to clarify their internal semantic hierarchy. Our method is guided by a small number of part annotations, and it achieves superior performance (about 13%—107% improvement) in part center prediction on the PASCAL VOC and ImageNet datasets.

Publication
In Proceedings of Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17).
Date